5 research outputs found

    Comparing MapReduce and pipeline implementations for counting triangles

    Get PDF
    A generalized method to define the Divide & Conquer paradigm in order to have processors acting on its own data and scheduled in a parallel fashion. MapReduce is a programming model that follows this paradigm, and allows for the definition of efficient solutions by both decomposing a problem into steps on subsets of the input data and combining the results of each step to produce final results. Albeit used for the implementation of a wide variety of computational problems, MapReduce performance can be negatively affected whenever the replication factor grows or the size of the input is larger than the resources available at each processor. In this paper we show an alternative approach to implement the Divide & Conquer paradigm, named pipeline. The main features of pipeline are illustrated on a parallel implementation of the well-known problem of counting triangles in a graph. This problem is especially interesting either when the input graph does not fit in memory or is dynamically generated. To evaluate the properties of pipeline, a dynamic pipeline of processes and an ad-hoc version of MapReduce are implemented in the language Go, exploiting its ability to deal with channels and spawned processes. An empirical evaluation is conducted on graphs of different sizes and densities. Observed results suggest that pipeline allows for the implementation of an efficient solution of the problem of counting triangles in a graph, particularly, in dense and large graphs, drastically reducing the execution time with respect to the MapReduce implementation.Peer ReviewedPostprint (published version

    MapReduce vs. pipelining counting triangles

    Get PDF
    In this paper we follow an alternative approach named pipeline, to implement a parallel implementation of the well-known problem of counting triangles in a graph. This problem is especially interesting either when the input graph does not fit in memory or is dynamically generated. To be concrete, we implement a dynamic pipeline of processes and an ad-hoc MapReduce version using the language Go. We explote the ability of Go language to deal with channels and spawned processes. An empirical evaluation is conducted on graphs of different size and density. Observed results suggest that pipeline allows for the implementation of an efficient solution of the problem of counting triangles in a graph, particularly, in dense and large graphs, drastically reducing the execution time with respect to the MapReduce implementation.Peer ReviewedPostprint (published version

    Towards a dynamic pipeline framework implemented in (parallel) Haskell

    Get PDF
    Streaming processing has given rise to new computation paradigms to provide effective and efficient data stream processing. The most important features of these new paradigms are the exploitation of parallelism, the capacity to adapt execution schedulers, reconfigure computational structures, adjust the use of resources according to the characteristics of the input stream and produce incremental results. The Dynamic Pipeline Paradigm (DPP) is a naturally functional approach to deal with stream processing. This fact encourages us to use a purely functional programming language for DPP. In this work, we tackle the problem of assessing the suitability of using (parallel) Haskell to implement a Dynamic Pipeline Framework (DPF). The justification of this choice is twofold. From a formal point of view, Haskell has solid theoretical foundations, providing the possibility of manipulating computations as primary entities. From a practical perspective, it has a robust set of tools for writing multithreading and parallel computations with optimal performance. As proof of concept, we present an implementation of a dynamic pipeline to compute the weakly connected components of a graph (WCC) in Haskell (a.k.a. DPWCC). The DPWCC behavior is empirically evaluated and compared with a solution provided by a Haskell library. The evaluation is assessed in three networks of different sizes and topology. Performance is measured in terms of the time of the first result, continuous generation of results, total time, and consumed memory. The results suggest that DPWCC, even naive, is competitive with the baseline solution available in a Haskell library. DPWCC exhibits a higher continuous behavior and can produce the first result faster than the baseline. Albeit initial, these results put in perspective the suitability of Haskell’s abstractions for the implementation of DPF. Built on them, we will develop a general and parametric DPF in the future.Postprint (published version

    MapReduce vs. pipelining counting triangles

    No full text
    In this paper we follow an alternative approach named pipeline, to implement a parallel implementation of the well-known problem of counting triangles in a graph. This problem is especially interesting either when the input graph does not fit in memory or is dynamically generated. To be concrete, we implement a dynamic pipeline of processes and an ad-hoc MapReduce version using the language Go. We explote the ability of Go language to deal with channels and spawned processes. An empirical evaluation is conducted on graphs of different size and density. Observed results suggest that pipeline allows for the implementation of an efficient solution of the problem of counting triangles in a graph, particularly, in dense and large graphs, drastically reducing the execution time with respect to the MapReduce implementation.Peer Reviewe

    MapReduce vs. pipelining counting triangles

    No full text
    In this paper we follow an alternative approach named pipeline, to implement a parallel implementation of the well-known problem of counting triangles in a graph. This problem is especially interesting either when the input graph does not fit in memory or is dynamically generated. To be concrete, we implement a dynamic pipeline of processes and an ad-hoc MapReduce version using the language Go. We explote the ability of Go language to deal with channels and spawned processes. An empirical evaluation is conducted on graphs of different size and density. Observed results suggest that pipeline allows for the implementation of an efficient solution of the problem of counting triangles in a graph, particularly, in dense and large graphs, drastically reducing the execution time with respect to the MapReduce implementation.Peer Reviewe
    corecore